Diffusive stability of oscillations in reaction-diffusion systems
نویسندگان
چکیده
منابع مشابه
Diffusive stability of oscillations in reaction-diffusion systems
We study nonlinear stability of spatially homogeneous oscillations in reaction-diffusion systems. Assuming absence of unstable linear modes and linear diffusive behavior for the neutral phase, we prove that spatially localized perturbations decay algebraically with the diffusive rate t−n/2 in space dimension n. We also compute the leading order term in the asymptotic expansion of the solution, ...
متن کاملNonlinear oscillations and stability domains in fractional reaction-diffusion systems
We study a fractional reaction-diffusion system with two types of variables: activator and inhibitor. The interactions between components are modeled by cubical nonlinearity. Linearization of the system around the homogeneous state provides information about the stability of the solutions which is quite different from linear stability analysis of the regular system with integer derivatives. It ...
متن کاملDiffusive mixing of periodic wave trains in reaction-diffusion systems
We consider reaction-diffusion systems on the infinite line that exhibit a family of spectrally stable spatially periodic wave trains u0(kx− ωt; k) that are parameterized by the wave number k. We prove stable diffusive mixing of the asymptotic states u0(kx + φ±; k) as x → ±∞ with different phases φ− 6= φ+ at infinity for solutions that initially converge to these states as x → ±∞. The proof is ...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملCross-diffusion Induced Instability and Stability in Reaction-diffusion Systems
In a reaction-diffusion system, diffusion can induce the instability of a uniform equilibrium which is stable with respect to a constant perturbation, as shown by Turing in 1950s. We show that cross-diffusion can destabilize a uniform equilibrium which is stable for the kinetic and self-diffusion reaction systems; on the other hand, cross-diffusion can also stabilize a uniform equilibrium which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2011
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-2010-05148-7